If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying x2 + 36x + 60 = 0 Reorder the terms: 60 + 36x + x2 = 0 Solving 60 + 36x + x2 = 0 Solving for variable 'x'. Begin completing the square. Move the constant term to the right: Add '-60' to each side of the equation. 60 + 36x + -60 + x2 = 0 + -60 Reorder the terms: 60 + -60 + 36x + x2 = 0 + -60 Combine like terms: 60 + -60 = 0 0 + 36x + x2 = 0 + -60 36x + x2 = 0 + -60 Combine like terms: 0 + -60 = -60 36x + x2 = -60 The x term is 36x. Take half its coefficient (18). Square it (324) and add it to both sides. Add '324' to each side of the equation. 36x + 324 + x2 = -60 + 324 Reorder the terms: 324 + 36x + x2 = -60 + 324 Combine like terms: -60 + 324 = 264 324 + 36x + x2 = 264 Factor a perfect square on the left side: (x + 18)(x + 18) = 264 Calculate the square root of the right side: 16.248076809 Break this problem into two subproblems by setting (x + 18) equal to 16.248076809 and -16.248076809.Subproblem 1
x + 18 = 16.248076809 Simplifying x + 18 = 16.248076809 Reorder the terms: 18 + x = 16.248076809 Solving 18 + x = 16.248076809 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-18' to each side of the equation. 18 + -18 + x = 16.248076809 + -18 Combine like terms: 18 + -18 = 0 0 + x = 16.248076809 + -18 x = 16.248076809 + -18 Combine like terms: 16.248076809 + -18 = -1.751923191 x = -1.751923191 Simplifying x = -1.751923191Subproblem 2
x + 18 = -16.248076809 Simplifying x + 18 = -16.248076809 Reorder the terms: 18 + x = -16.248076809 Solving 18 + x = -16.248076809 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-18' to each side of the equation. 18 + -18 + x = -16.248076809 + -18 Combine like terms: 18 + -18 = 0 0 + x = -16.248076809 + -18 x = -16.248076809 + -18 Combine like terms: -16.248076809 + -18 = -34.248076809 x = -34.248076809 Simplifying x = -34.248076809Solution
The solution to the problem is based on the solutions from the subproblems. x = {-1.751923191, -34.248076809}
| 2(x-4)-11=2x-19 | | r+(s+2r)= | | 9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999+11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111122222222222222222222222222222222222222222222222=k | | 4k-7(4k+3)=-189 | | 2x^2+6x=5.625 | | 9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999+1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111112222222222222222222222222222222 | | 3c-c-c-c=14 | | 9(10-6x)=7n-3 | | 3x-180=-33x | | -3x^2-7x+7=0 | | 3x+5=7x+49 | | 2x^7-14x^14= | | (-6x-4)+5x= | | 2(18-2x/3) | | 5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5+99999999=x | | 5+8(-n-5)=-3(-7n+6)+4 | | 8-16k=-40 | | 3x+5-5x-2x=6x-7 | | 8w-5=3w+10 | | a/-3-7=-3 | | 6s-22=-46+3s | | 7a(a+5b+2b)= | | 2(2m)-4-m=14 | | (6)/(15)*(15)/(6)= | | 4x^2-3x+6= | | 7t-21=-41+3t | | 2-6=-10 | | 2s=4e-16 | | 0.4*0.4= | | 7s^2-7= | | -8-b+8b=-23 | | X^2-14x=-16 |